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Closed formulae are derived for matrix elements of spin-nonadapted reduced Hamilto- 
nians in a finite-dimensional, antisymmetric Hilbert space. The role of the spin-adaptation is 
discussed. Some numerical results confirm that this role is not critical for approaches based 
upon the eigenvectors of these Hamiltonians. 

1. Introduction 

The reduct ion of  an N-electron problem to an effective two-electron one has 
been of  great  interest for many  years. We cannot  provide here specific details of  
these developments and refer instead the interested reader to original papers [1-18]. 
These developments can be roughly divided into two groups: (i) those in which 
the reduction procedure is applied to the wavefunction, yielding density matrices 
[4-14], and ( i i ) those,  in which the reduction is applied to the Hamil tonian 
[16-28]. 

In general, the efforts to formulate an N-electron theory in terms of  reduced den- 
sity matrices, while employing the variational principle, bear heavily on the N- 
representabili ty problem (see, e.g., [29]). In contrast,  the reduced Hamil tonian  
approach  is a non-variat ional  procedure that  effectively describes an N-electron 
system by a reduced Hamil tonian acting in a p-body space ( p < N ) .  The main  
emphasis in this approach is on the eigenfunctions of  the Hamil tonian.  This 
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approach was employed by several authors [17,18,23] but the obtained results 
have not fulfilled the expectations that were initially associated with it. 

Another method employing the idea of reduced Hamiltonians was formulated 
by Valdemoro [24-26]. Her approach is closer to the reduced density matrix form- 
alism and employs the contraction mapping relating reduced density matrices of 
different order [13,14,24-26] to define the required reduced Hamiltonians. In 
essence, these Hamiltonians are obtained by applying a contraction mapping to an 
N-electron Hamiltonian defined in a spin-adapted and antisymmetric full config- 
uration interaction (FCI) Hilbert space. The resulting reduced Hamiltonian 
depends on the total number of electrons, N, the total spin, S, and the number of 
orbitals, K, associated with the FCI Hilbert space in which the original N-electron 
Hamiltonian is defined. This spin-adapted reduced Hamiltonian (SRH), is N- and 
S-representable [8] by construction. It should be stressed that the spin adaptation 
of the Hamiltonian is independent of the reduction mapping. So far, two different 
spin projections were employed [25,26]: projection upon S 2 and Sz eigenspaces and 
projection upon only S~ adapted spaces. However, no attempt has yet been made 
to employ spin non-adapted reduced Hamiltonians (RH). 

It is the aim of this paper to present general expressions for spin-nonadapted 
RH matrix elements. These are much simpler than those for the SRH, and the 
eigenvectors of both operators are generally different when finite-dimensional 
Hilbert spaces are employed. However, these eigenvectors are identical in the limit 
of complete (either spin-adapted or spin-nonadapted) infinite-dimensional Hil- 
bert spaces. 

The paper is organized as follows. In section 2 we give a survey of previous theo- 
retical results. In particular, we emphasize that the spin-adaptation influences 
only the coefficients at the integrals that appear in the expression for the reduced 
Hamiltonian. Consequently the spin-adaptation can be performed independently 
of the contraction itself. In section 3, the general formulation of the RH is given 
and, finally, in section 4 we present the asymptotic behavior of the eigenvectors of 
both reduced Hamiltonians in complete Hilbert spaces and discuss the role of spin- 
adaptation. Some numerical results from the one-body spin-adapted and spin-non- 
adapted reduced Hamiltonians are presented to provide an additional insight. 

2. Survey of previous results 

Density matrices of different order are related as follows [13,24-26]: 

where [~), [0) and I~), [0) are q-electron and p-electron configurations, respec- 
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tively; PD z and qD L a r e  p- and q-reduced density matrices corresponding to the N- 
electron wave function I/5>; and PD z°  is the pth order ~9-transi t ion density 
matrix. The reducing mapping (1) results as a natural consequence of the commuta- 
tion properties of fermion creation and annihilation operators of the second quan- 
tization formalism [25,26]. 

Let us recall that the spectral decomposition of an N-electron Hamiltonian EI 
takes the form 

M = e L I z > < z l  = L , ( 2 )  

L L 

where EL is the exact eigenvalue that would be obtained by an FCI calculation, 
IL> is the corresponding eigenvector and ©z represents the N-body non-reduced 
density matrix. If we close eq. (2) by the N-electron configurations IA> and IO>, we 
get the corresponding matrix element, 

~"~ao = Z EL~'D~Sg" (2') 
L 

If we now multiply both sides of eq. (2') by pr~Zn (the A, 3' element of the p-body 
AO-transition matrix) and sum over all A, O, we obtain 

Z ] I { A o P D A ~  = Z EL ~ D~S9pDA~ = Z ELPD~'r ' (3) 
AS9 L AS9 L 

the last equality resulting from eq. (1) (note that in this case q = N). Equation (3) 
now implies the definition of the reduced Hamiltonian, namely 

p AS9 Pnt~7 = E In[As9 0)~3' = E ELPDLA7" (4) 
AS9 L 

It must be stressed that while eq. (2') represents the spectral decomposition of 
the FCI Hamiltonian, eq. (4) does not, since the reduced density matrices are not 
orthogonal. 

Now, the N-electron Hamiltonian may be written in the form [27,30] 

l y~{ijlkl} ZEj~ , (5) 
ijkl 

where 

{ijlkl} = <i(1)I <k(2)Ih2(l, 2)1l(2)>[/(1)> 

1 
+ ~ [6kt(i(1)lhl (1)lj(1)> + 6ij(k(1)lhl (1)ll(1)>] (6) 

are the generalized two-electron integrals, and 2Ejk are spin-free density operators 
[31 ] related to density matrices: 

2 ir~ZS 9 1 *" ij;kl = ~ < A I 2 Ej~t l a'2 > " (7) 



140 J. Planelles, P. Viciano / Reduced Hamiltonians. I 

Finally, by substituting Hamiltonian (5) into eq. (4), using the definition of the 
unit operator 1] = ~ Is )(S l, and the notation 

PFIAJ2~'A,7 (AIPE~I s2 ) , (7') 

where A and 7 are strings or orbital labels, we get 

p t n'~ = ~ ½ Y~Jijlkl)<Zl2Ej~lS~> <AIPE~IS~) 
A J2 ijkl 

= ~ .  i~jkl{ijlkl} Z (~I2Eja/(~A IA)(AI)PE~[~) 

=l lz{ij[kl}((2~ikp'~'~\\ ~jt " ~ / / "  (8) 
- r "  ijkl 

The last equality uses the notation << >> to denote the trace. 
We would like to stress the fact that if IA) and IS2) represent spin-adapted N- 

electron configurations, the trace in eq. (8) runs over N-electron configurations 
that are eigenfunctions of the spin operators S 2 and ffz with eigenvalues S and M. 
This means that the sum runs over a basis of an antisymmetric component of a spin- 
adapted Hilbert space 

H A (N, K, S, M) = I v~N~.~ ," 2K )sM, (9) 

where the superscript A indicates the antisymmetric component and the spin quan- 
tum numbers S, M label the eigenvalues of spin operators. The one-electron space 
V2~ is spanned by a set of 2K spin-orbitals, and is a product of the K-dimensional 
orbital space, 

n K VK = spa {q~k}k=l, (10) 

spanned by a set of K orthonormal orbitals, and the two-dimensional spin space. 
On the other hand, if [A) and [Y2) represent Slater determinants, the trace in eq. 

(8) runs over a basis of the Hilbert space H A (N, K), 

HA(N,K) = (v~N) A , ( l l )  

an antisymmetric component of the N-fold tensorial product of a one-electron 
space. 

Thus, the general structure of the SRH and the RH is formally identical, and 
is given by eq. (8), the only difference being the space in which the traces are 
calculated. 

3. Matrix  elements  o f  reduced Hami l tonians  

Equation (8) may be further simplified by taking into account several symmetry 
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relations that are satisfied by generalized two-electron integrals and by traces of 
products of density operators. A comprehensive study of matrix elements of SRHs 
was already carried out by one of us [28]. This study showed that the traces in eq. 
(8) may be classified into the following three types: 

, / / 2 E a b  p l:gqrs... \ \ 
(a) o~ = \ . ,  qr L ' a b c . . . / / ,  

with {q, r} # {a, b} while, as a whole, {a, b, q, r, s . . . }  = {q, r, a, b, c . . .} .  

I I 2 E k a  P I~ qrs''" 
(b) /3 = ,,,, l"(kq) L'abc... > >' 

with a # q and T a permutation of the $2 group (i.e., the identity or a transposi- 
tion), and 

(C) /Z = << 21~kl Pl~qrs"" \ \  
~'~'F(kl) ~-*abc... / / " 

Several distinct cases for each type must be considered, and this number 
increases with the increasing order p of the p-SRH. For example, there are four 
independent/3-coefficients, four independent/z-coefficients and two independent 
a-coefficients in 2-SRH. The 3-SRH has four a-, eight/3- and six/z-coefficients. 
The total number of independent coefficients of the 4-SRH is 34, etc. 

Since the difference between the SRH and the RH coefficients is only in the 
space in which these traces are calculated, it would seem, on the first sight, that 
both matrices have the same number of coefficients. However, there exist certain 
symmetry relationships between these coefficients when calculated in the larger, 
spin-nonadapted space, so that irrespective of the orderp of thep-RH,  there is only 
one independent coefficient of each kind. From a practical point of view, we 
choose for this coefficient the one having a maximum coincidence of upper and 
lower indices, namely 

O~ = ( ( qr ~'~abcde... / / = 

/ / 2 E k a  p Eqbcde... \ \ 2E12 pE3456...(p+2) 
/3 ~- \ \  kq abcde . . . / /  = << 13 2456...(p+2) >>: 

/ / 21 : i ' k l  pl:gabcde... NN 2E12 p 15-3456.-.(p+2) \ x  
/'1" = \ \  *-*kl *-~abcde...// = << 12 L'3456...(p+2)//" (12) 

Since traces are independent of the numbering of orbitals employed, we can use 
the expressions on the right-most sides of eq. (12), where specific orbitals are 
used. 

The additional coefficients arising in the p-RH are then related to those given 
above, eq. (12), by appropriate permutations of labels of the two- and p-body den- 
sity operators. We designate these coefficients as c~(Q),/3(Q) and #(Q), and the gen- 
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eric ones by C(Q), where Q stands for a particular permutation (Q e S2 ® Sp) yield- 
ing the desired coefficient when acting on the corresponding standard coefficient 
defined by eq. (12). The next simple formula related a general C(Q) coefficient with 
the corresponding standard one, designated by C, so that 

c ( o )  l q (13) = c ,  

where q is related to the permutation Q. 
If the cycle structure of Q is Q = 1 al 2 a2 . . .  r a t ,  then q is given by 

r 
q= y ~ ( ] -  1)aj. (14) 

j=2 

The proof ofeq. (13) is given in appendix A. 
A great simplification of coefficients (12) leads to a much simpler structure of 

matrix elements of the RH vs. the SRH. For example, in the less favourable case of 
a two-body Hamiltonian (note that as the order of the Hamiltonian increases, the 
ratio (number of RH-coefficients/number of SRH-coefficients) decreases, the for- 
mula yielding a general 2-SRH matrix element is 

(2-SRH)r ~q = A1 {Prlqs} 

+ A2{Pslqr} 

+ Bl[6pr{qslaa } + 6qs{prlaa}] 

+ Cl[6pr{qaJas} + 6qs{palar}] 

+ BE[6ps{qrlaa} + 6qr{ps[aa}] 

+ C2[6l, s{qalar } + 6qr{palas}] 

+ F16pr6qs{aala'a'} 

+ G16p~6qs{adla'a} 

+ F26ps6q~{aala'a'} 

+ G26ps6qr{adlda}. (15) 

Equation (15) collects in a unique formula all possible cases of matrix elements 
given previously (eqs. (78)-(84) in [27]). Here the notation has been simplified and 
the expression written in a more symmetric way, having compacted it as much as 
possible. Nevertheless, the expression is still complex in view of the complexity of 
the SRH structure. The notation used here is the same as in the previous paper on 
general p-SRH matrix elements [28]. In eq. (15), A1,A2 are a-coefficients, 
B1, BE, C1, C2 are/~-coefficients and F1, F2, G1, G2 are/z-coefficients; {pqlrs} desig- 
nate generalized two-electron integrals (see eq. (6)) and 
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K 

(qslaa}--- ~-~{qslkk}, 
k 

K 

(qalas } = ~-~{qklks}, 
k 

K 

{aa ldd}=l~k t {kk l l l } ,  

K 

{adlda } = 1 ~kt {klllk} " (16) 

In contrast, a general matrix element formula for the 2-RH is, 

$2 

(2-RH)r7 =a[Prlqs] + ~-~(-½)tT(rs)(~(6pr[qslaa] 
T 

+ 6qs~orlaa]) + #6pr6q~[aalda']}, (17) 

where [prlqs ] = {prlqs } - ½{Pslqr }, the permutation 7"(rs) may be either, the iden- 
tity or the transposition (rs), and t is the parity of ~r. 

A comparison of eqs. (15) and (17) gives us an idea about the different complex- 
ity of the SRH and the RH. This different complexity, which reflects the differ- 
ences between the HA(N,K, S ,M) and the HA(N,K) Hilbert spaces, is most 
evident when calculating coefficients in practical cases. There are no closed formu- 
las for these coefficients when considering H A (N, K, S, M) and a procedure invol- 
ving characters of the irreducible representations of the symmetric group Sp+2 (p is 
the order of the SRH) must be used. The complexity of this procedure rises very 
fast with p, since the symmetric group is involved [32]. In contrast, we have three 
very simple closed formulas, namely eqs. (12), for these coefficients when consider- 
ing H A (N, K). The explicit formulas for these coefficients are derived in appendix 
B. 

4. Asymptotic behaviour in complete Hilbert spaces. The role of  
spin-adaptation 

It has been stated [25,26,33] that the role of the spin-adaptation in the SRH 
approach is to incorporate, in the reduced Hamiltonian, the information about the 
spin-symmetry of the N-electron system. On the other hand, as pointed out in sec- 
tion 1, the eigenvectors are the most useful objects yielded by the reduced Hamilto- 
nians. In particular, within the SRH framework, several procedures of building 
approximate density matrices from the eigenvectors of the SRH have been pro- 
posed [26,34]. In order to discuss the role of the spin adaptation of reduced Hamil- 
tonians, we display the coordinate representation of a properly renormalized, 
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spin-adapted, two-body reduced Hamiltonian H'  (1, 2), defined in an asymptoti- 
cally complete infinite-dimensional Hilbert space [3 5], 

_fI'(1,2) = 2(a + + 3a-)/-/(1,2) + (3w + + 3w-) 

= kli /(1,2) + k2. (18) 

Here/-/(1,2) = hi (1) + hi (2) + h2(1, 2) and a +, a-, w +, w- are constants depend- 
ing on the number of electrons N, the spin-symmetry and some other magnitudes 
related to a statistical description of the N-electron Hamiltonian spectrum [35]. 
Then kl and k2 are constants. 

It is obvious from eq. (18) that/~/'(1,2) and ft(1,2) have the same eigenvectors 
and their eigenvalues are simply related. The kl and k2 constants imply a scaling 
and a shift yielding the eigenvalues of/-/'(1,2) from those of/-/(1,2). Since these 
constants depend upon the spin-symmetry of the N-electron system, the scaling 
will be different for each spin-symmetry of the N-electron system. 

We can thus conclude that in the asymptotic case of complete Hilbert spaces, 
the eigenvectors of differently spin-adapted reduced Hamiltonians are the same 
and thus identical to those associated with the spin-nonadapted RH. However, the 
spin-adaptation distinguishes the corresponding eigenvalues. All these reasonings 
would seem to indicate that the spin-adaptation is important for approaches that 
are based on the eigenvalues of the SRH. However, it is not clear what is the role of 
spin-adaptation in the approaches based on eigenvectors. When we deal with 
finite-dimensional model spaces, the eigenvectors of the SRH and the RH are not 
the same, but approach one another when the space is being completed. The role, if 
any, that we could assign to the spin-adaptation in finite-dimensional model 
spaces may thus be related to the different dimensionality of the spin-adapted N- 
electron Hilbert spaces. The dimension of this space, built from a K-dimensional 
orbital space, is given by the Weyl-Paldus formula [36], 

K + I  I N - S  ½ N + S + I  " 

In order to give some insight into the role of spin-adaptation in approaches 
based upon the eigenvectors of reduced Hamiltonians, we include a set of calcula- 
tions on spin-adapted and spin-nonadapted one-body reduced Hamiltonians (1- 
SRH and 1-RH), considering the ground state of atoms in the first row of the peri- 
odic system. The calculations were performed in a DZ basis set [37]. This basis set 
is not an ideal one for a configuration interaction calculation and the description of 
excited states, but it is very convenient from a computational point of view. It is 
also designed for the study of ground states and thus convenient for our purposes. 

For each of the studied atoms, we obtained the eigenvectors of the one-body 
spin-nonadapted reduced Hamiltonian, 1-RH, and those of the 1-SRH (this Hamil- 
tonian was adapted to the spin symmetry of the ground state of the studied atom). 
The independent quasiparticle, IQP, method [26] assumes that these vectors are 
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Table 1 
Performance of the eigenvectors of RH and SRH as natural orbitals for the ground state of the first 
row elements. The expression for the coefficient e is given in eq. (24). 

Atom EIQp 

RH SRH 

Li 0.003 0.003 
Be 0.005 0.005 
B 0.058 0.048 
C 0.029 0.028 
N 0.014 0.014 
O 0.007 0.006 
F 0.002 0.002 
Ne 0.002 0.002 

approximate natural orbitals for all the states of the system. On the other hand, 
the best approximate natural orbitals for the ground state in an independent parti- 
cle model are the eigenvectors of a self-consistent (SCF) calculation. We thus com- 
pare the ground state natural orbitals of the 1-SRH and the 1-RH with the SCF 
orbitals. As a parameter of comparison we choose the coefficient 

where N is the number of electrons and 2" is either the RH or the SRH. We expect 
the best IQP method to approximate the variational independent particle (SCF) 
model. The results are shown in table 1. From this table we can conclude that the 
spin-adaptation does not essentially improve the quality of the vectors that are 
used in the construction of density matrices. 

On the other hand, it was established [34] that we can get better density matrices 
when using eigenvectors of higher order p-SRH. Of course, the computational pro- 
grams needed to built such p-SRH are more complex. Taking into account that 
the role of spin-adaptation is not decisive, it would be more economical to use much 
simpler RHs rather than SRHs. 
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A p p e n d i x  A 

Proofofeq.  (13)  
First, we are going to prove eq. (13) for the case of/z-type coefficients, and subse- 

quently, will generalize it to other cases. 
/ / p+2 E123456.-(p+2) \ \ The coefficient/z, eq. (12), may be written as ,,,, 123456...(p+2)//" An arbitrary 

/z-type coefficient, denoted as #(Q), is then written as 

/ / p+2/TQ(123456..-) \ \ (A. 1 ) 
] z (O)  = \ x  ~123456... / / -  

L e t  Q be a general permutat ion with the cycle structure 1 a~ 2a2... r a'. The cycles 
of  Q act as independent operators because no label can belong to more than one 
cycle. We can thus assume that Q is an r-cycle. The independence of  cycles enables a 
straightforward generalization to an arbitrary Q. 

Let us write #(Q) in terms of  fermion operators of the second quantization form- 
alism [31,32], 

( (  ~2~ ~ Q(123456._) :~(Q) = B o . l  0 .2~3 ,  , .  

0-! . , .  

,123456// ,A2, ----- (__ l )q  ~123456... B ~ : :  3 
"Q(~w:3.-.) ... " 

~Yl -.. 

The averages involved in the trace vanish unless both strings of spin labels, corre- 
sponding to the creation and the annihilation operators, are identical. Consider 
thus, those r labels that are affected by the permutat ion (the remaining non-per- 
muted labels may thus be ignored). 

The summation over O" i extend over two distinct spin orientations a and/L For  
the r labels considered we have 2 r possible orderings. The only strings that are invar- 
iants under Q are those involving the same spin everywhere, i.e., a l a 2 a 3 a 4  . . .  

and/31/32/33/34 . . . .  Thus, amongst  all these 2 r terms of #(Q) only two give nonzero 
contribution to the trace. On the other hand, every contribution yields the same 
mean value. As a consequence, the #(Q) coefficient is (1/2) ~- I smaller than #, what  
proves eq. (13) for this type of  coefficients. 

Let us next consider the case of/~-coefficients (we omit the proof  for the a-type 
coefficients, since it follows exactly the same lines as the proof  for the fl-type coeffi- 
cients). Since Q e $2 ® Sp, we may write an arbitrary/3(Q) coefficient as 

/ / 2 p P ( 1 2 )  p b-,R(3456...)N\ (A.3) 
/ 3 (Q)  = \ \  ~13 ~2456... / / ,  

where Q = P R  = RP. Applying the generalized Wick theorem, we find that  

/ /p+21s,PR(123456.. . ) \ \  ((P+lEP(12)456.. .)  \ \  
/ 3 ( Q )  = , , \  ~"132456_. / /  dr , ,  1R_I(Z456...)22 

__ //p+21gQ(123456...) (: (, p+l/7Q(12456...) -, \ 
- -  \ \  ~132456... ) )  -t- , ,  ~12456... ) /~" (A.4) 



J. Planelles, P. Viciano / Reduced Hamiltonians. I 147 

Each term in eq. (A.4) may be regarded as a #-type coefficient. Thus, Q produces 
the same scalar factor in both terms on the right-hand side ofeq. (A.4), and this fac- 
tor was found to be given, for the/z-type coefficients, by eqs. (13) and (14). Thus, 
since/3 is given by eq. (A.4) when Q is equal to the identity, we have proved that eq. 
(13) applies to/3-type coefficients as well. The same reasoning extends the proof 
to a-type coefficients. 

Appendix B 

General formulas for the coefficients of the p-RH 
According to standard rules for products of density operators [32], eq. (12) 

yields 

//pE123456...(0+2)\\ //pE12456...(0+2) 
a = \ \  341256_.(0+2)// -Jr \ \  14256...(0+2) ) )  

//pE12356...(0+2)\\ //pE1256...(0+2)\\ 
q- \ x  32156...(0+2)//-}- \ \  1256...(0+2)// 

//pE123456...(0+2)\\ //pE12456...(0+2) 
/3 = \ \  132456...(0+2)//-t- \ \  12456._(0+2) ) ) ,  

/e '  p E  123456"''(0+2) \ \ (B. 1 ) 
/Z = x \  123456...(0+2)//" 

Equation (13) enables us to transform the density operators of eqs. (B.1) into 
well ordered operators. Since an ordered density operator is given by a product of 
occupation numbers (see, e.g., [32]), we have that 

C~ = - - l ( (n ln2n3 . . .  np+2)) -- ( (n ln2n3 . . .  np+l ) )  + ( (n ln2n3 . . .  np))  , 

/3 = - - l ( (n ln2n3 . . .  np+2)) + ( (n ln2n3 . . .  np+l ) ) ,  

/Z = ( (n ln2n3 . . .  np+2)). (B.2) 

Finally, the next expression [38] for the traces of occupation number operators 
in a H A (N, K) space, 

( ( n ln2n3 . . .  np))  = 2 p Z ' (B.3) 
i=0 IN - p  - iJ 

gives us a set of three general, closed, formulas for the calculation of coefficients 
arising in thep-RH, for an arbitrary orderp. 
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